Реферат: Диференціальні рівняння (першого порядку), розв’язані відносно похідної


Рубрика: Математика, логика
Вид: реферат
Язык: украинский
Размер файла: 35 кБ

Скачать реферат

Означення 2.10.?Розв’язок, який складається з точок єдиності розв’язку задачі Коші називається частинним і його можна отримати з загального при фіксованому С.
Розв’язок задачі Коші, який задовольняє теоремі Пікара, є частинний розв’язок.
Означення 2.11.?Розв’язок, в кожній точці якого порушується єдиність розв’язку задачі Коші, будемо називати особливим.
Геометрично особливому розв’язку відповідають інтегральні криві, які не містяться в загальному розв’язку. Тому особливий розв’язок не може існувати всередині області D існування загального розв’язку. Його не можна отримати з формули загального розв’язку ні при яких числових значеннях С, включаючи . Його можна отримати з загального розв’язку лиш при .
Існують ні частинні ні особливі розв’язки. Їх можна отримати шляхом склеювання кусків частинних і особливих розв’язків.

Бесплатно скачать реферат "Диференціальні рівняння (першого порядку), розв’язані відносно похідної" в полном объеме