Курсовая: Методика ознайомлення з числами першого десятка



Основи теорії множин були закладені відомим німецьким математиком Георгом Кантором у другій половині минулого століття. Поява теорії множин була зустрінута з ентузіазмом багатьма авторитетними математиками. Вони побачили в ній можливість створення метамови математики, тобто формальної одностайної системи понять і принципів, за допомогою якої можна було б викласти з єдиних позицій зміст різноманітних традиційно далеких один від одного розділів математики. Перші такі досить успішні спроби були виконані вже незабаром після виникнення канторівської теорії множин.
Однак пізніші дослідники виявили в теорії Кантора чимало суперечностей: так званих парадоксів або антиномій теорії множин. Виникла кризова ситуація. Одна частина математиків, посилаючись на штучність сформульованих антиномій, вважала за краще не помічати ці суперечності або не надавати їм великого значення. У той час як інша (скажімо, відповідальніша) група математиків зосередила свої зусилля на пошуках більш обгрунтованих та точних принципів і концепцій, на яких могла б бути побудована несуперечлива теорія множин.
У результаті було запропоновано кілька формальних (або аксіоматичних) систем, які служать фундаментом сучасної теорії множин, а значить, фундаментом всієї класичної математики. Важливість цих досліджень серед іншого підкреслює той факт, що значний внесок у становлення аксіоматичної теорії множин зробили такі видатні математики і мислителі нашого століття, як Б.Рассел, Д.Гільберт, К.Гедель та ін.

Бесплатно скачать реферат "Методика ознайомлення з числами першого десятка" в полном объеме