Реферат: Нестандартные методы решения тригонометрических уравнений: графический и функциональный
Пусть X и Y - два произвольных численных множества. Элементы этих множеств будем обозначать х и у соответственно и будем называть переменными.
Определение. Числовой функцией, определенной на множестве Х и принимающей значения во множестве Y, называется соответствие (правило, закон), которое каждому х из множества Х сопоставляет одно и только одно значение у из множества Y.
Переменную х называют независимой переменной или аргументом, а переменную у – зависимой переменной. Говорят также, что переменная у является функцией от переменной х. Значения зависимой переменной называют значениями функции.
Введенное понятие числовой функции является частным случаем общего понятия функции как соответствия между элементами двух или более произвольных множеств.
Пусть Х и Y – два произвольных множества.
Определение. Функцией, определенной на множестве Х и принимающей значения во множестве Y, называется соответствие, соотносящее с каждым элементом множества Х один и только один элемент из множества Y.
Определение. Задать функцию – это значит указать область ее определения и соответствие (правило), при помощи которого по данному значению независимой переменной находятся соответствующие ему значения функции.
С понятием функции связаны два способа решения уравнений: графический и функциональный. Частным случаем функционального метода является метод функциональной, или универсальной подстановки.
Определение. Решить данное уравнение – значит найти множество всех его корней (решений). Множество корней (решений) может быть пустым, конечным или бесконечным.
В следующих главах теоретического раздела мы разберем вышеописанные способы решения уравнений, а в разделе «Практикум» покажем их применение в различных ситуациях.
Бесплатно скачать реферат "Нестандартные методы решения тригонометрических уравнений: графический и функциональный" в полном объеме