Реферат: Производная и ее приложения
Настоящая работа даёт учащимся новый подход к многим преобразованиям в математике, которые стандартным путём трудно разрешимы или разрешимы, но громоздкими способами. Рассмотренные подходы нестандартного характера для учащихся покажутся новыми и необыкновенными, что расширит их кругозор и повысит интерес к производной.
Итак, геометрический смысл производной: производная функции в точке x0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x0.
Физический смысл производной: производная функции y = f(x) в точке x0 - это скорость изменения функции f(х) в точке x0
Экономический смысл производной: производная выступает как интен-сивность изменения некоторого экономического объекта (процесса) по вре-мени или относительно другого исследуемого фактора.
Производная находит широкое приложение в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени; для нахождения наибольших и наименьших величин.
Производная является важнейшим инструментом экономического анализа, позволяющим углубить геометрический и математический смысл экономических понятий, а также выразить ряд экономических законов с помощью математических формул.
Наиболее актуально использование производной в предельном анализе, то есть при исследовании предельных величин (предельные издержки, предельная выручка, предельная производительность труда или других факторов производства и т. д.).
Производная применяется в экономической теории. Многие, в том числе базовые, законы теории производства и потребления, спроса и предложения оказываются прямыми следствиями математических теорем.
Знание производной позволяет решать многочисленные задачи по экономической теории, физике, алгебре и геометрии.
Бесплатно скачать реферат "Производная и ее приложения" в полном объеме