Дипломная: Исследование оптимальности по конусу в многокритериальной задаче



В работе проведено исследование оптимальности по конусу в многокритериальной задаче. Такая проблема анализируется как оптимизационная задача в условиях неопределённости, именно, в условиях неопределённости цели. Обычно в качестве решения многокритериальной задачи предлагается оптимальное по Парето (эффективное) решение. Но таких решений, как правило, много. Возникает проблема его уточнения .
Оптимальное по Парето решение входит в класс конусных решений. Многогранный конус в векторном критериальном пространстве задаёт векторную упорядоченность, что позволяет определить оптимальное по конусу решения. Такое решение имеет определённый содержательный смысл, связанный с экспертными оценками важности критериев.
Конусное решение указывает приемлемый компромисс между критериями по мнению экспертов при принятии решения. Именно, если исход оптимален по конусу и от него возможен переход к другому исходу, что выигрыш по одному критерию будет большим, тогда найдётся другой критерий, что проигрыш по нему будет недопустимо большим.
Конусные решения в многокритериальной задаче имеют важное свойство: если первый конус включает второй конус как подмножество, то множество оптимальных по первому конусу решений является подмножеством решений, оптимальных по второму конусу. На этом свойстве построена процедура уточнения решения.
Конусные отношения можно задавать в матричной форме, именно в форме стохастических матриц. В этом случае последовательное уточнение конусной упорядоченности соответствует умножению стохастических матриц. Предлагается следующий алгоритм: на основании мнения экспертов строится последовательность расширяющихся конусов, которой соответствует последовательность вложенных множеств конусных решений. Решение по предельному конусу называется уточнённым по последовательности конусов оптимальным решением многокритериальной задачи.
В работе проведено обоснование алгоритма уточнения решения. Указаны свойства последовательности стохастических матриц, которые гарантируют существование предельного конуса. Выявлены условия, при которых уточнённое по последовательности конусов оптимальное решение является единственным. Рассматривается модельный пример.
На основании исследования оптимальности по конусу в многокритериальной задаче предложена концепция уточнения решения, выявлены свойства уточнённого по последовательности конусов решения и указан случай единственности такого решения.

Список использованной литературы:


1. Жуковский В.И. Кооперативные игры при неопределённости и их приложения. М: Эдиториал УРСС, 1999.
2. Подиновский В.В., Ногин В.Д. Парето - оптимальные решения многокритериальных задач. М.: Наука, 1982.
3. Розен В.В. Математические модели принятия решений в экономике. – М.: Книжный дом "Университет", Высшая школа, 2002.
4. Ногин В.Д. Принятие решений в многокритериальной среде: количественный подход. -М.: Физматлит, 2002.
5. Yu P.L. Cone convexity, cone extreme points and nondominated solutions in decision problems with multiobjectives // Journal of optimization theory and application. -1974. -V. 14, No3. - P. 319 – 377.
6. Kuroiwa D., Tanaka T., Truong Xuan Duc Ha. On cone convexity of set – valued maps // Pros. 2nd World Congress of Nonlinear Analysis – Elsevier Science, 1997. -P. 1487 – 1496.
7.Матвеев В.А. Существование и единственность уточнённого по конусу решения многокритериальной задачи // Труды псковского политехнического института. 10.1. Естествознание и математика. Псков, 2006. -С.24 -27.
7. Беклемишев Д.В. Дополнительные главы линейной алгебры. М.: Наука, 1983 .
8. Гантмахер Ф.П. Теория матриц. Издание 3. М.: Наука, 1967.
9. Васильев Ф.П. Численные методы решения экстремальных задач. М.: Наука, 1980. Бесплатно скачать реферат "Исследование оптимальности по конусу в многокритериальной задаче" в полном объеме