Реферат: Ортогональные проекции
Сущность метода ортогонального проецирования заключается в том, что предмет проецируется на две взаимно перпендикулярные плоскости лучами, ортогональными (перпендикулярными) к этим плоскостям..
Одну из плоскостей проекций H располагают горизонтально, а вторую V — вертикально. Плоскость H называют горизонтальной плоскостью проекций, V — фронтальной. Плоскости H и V бесконечны и непрозрачны. Линия пересечения плоскостей проекций называется осью координат и обозначается OX. Плоскости проекций делят пространство на четыре двугранных угла — четверти.
Рассматривая ортогональные проекции, предполагают, что наблюдатель находится в первой четверти на бесконечно большом расстоянии от плоскостей проекций. Так как эти плоскости непрозрачны, то видимыми для наблюдателя будут только те точки, линии и фигуры, которые расположены в пределах той же первой четверти.
При построении проекций необходимо помнить, что ортогональной проекцией точки на плоскость называется основание перпендикуляра, опущенного из данной точки на эту плоскость.
На рисунке показаны точка А и ее ортогональные проекции а1 и а2.
Точку а1 называют горизонтальной проекцией точки А, точку а2 — ее фронтальной проекцией. Каждая из них является основанием перпендикуляра, опущенного из точки А соответственно на плоскости H и V.
Можно доказать, что проекции точки всегда расположены на прямых, перпендикулярных оси ОХ и пересекающих эту ось в одной и той же точке. Действительно, проецирующие лучи Аа1 и Аа2 определяют плоскость, перпендикулярную плоскостям проекций и линии их пересечения — оси ОХ. Эта плоскость пересекает H и V по прямым а1 аx и а1 аx,, которые образуют с осью OX и друг с другом прямые углы с вершиной в точке аx.
Справедливо и обратное, т. е. если на плоскостях проекций даны точки a1 и a2, расположенные на прямых, пересекающих ось OX в данной точке под прямым углом, то они являются проекциями некоторой точки А. Эта точка определяется пересечением перпендикуляров, восставленных из точек a1 и a2 к плоскостям H и V.
Заметим, что положение плоскостей проекций в пространстве может оказаться иным. Например, обе плоскости, будучи взаимно перпендикулярными, могут быть вертикальными Но и в этом случае доказанное выше предположение об ориентации разноименных проекций точек относительно оси остается справедливым.
Чтобы получить плоский чертеж, состоящий из указанных выше проекций, плоскость H совмещают вращением вокруг оси OX с плоскостью V, как показано стрелками на рисунке. В результате передняя полуплоскость H будет совмещена с нижней полуплоскостью V, а задняя полуплоскость H — с верхней полуплоскостью V.
Проекционный чертеж, на котором плоскости проекций со всем тем, что на них изображено, совмещены определенным образом одна с другой, называется эпюром (от франц. еpure – чертеж). На рисунке показан эпюр точки А .
При таком способе совмещения плоскостей H и V проекции a1 и a2 окажутся расположенными на одном перпендикуляре к оси OX. При этом расстояние a1ax — от горизонтальной проекции точки до оси OX равно расстоянию от самой точки А до плоскости V, а расстояние a2ax — от фронтальной проекции точки до оси OX равно расстоянию от самой точки А до плоскости H.
Прямые линии, соединяющие разноименные проекции точки на эпюре, условимся называть линиями проекционной связи.
Положение проекций точек на эпюре зависит от того, в какой четверти находится данная точка. Так, если точка В расположена во второй четверти, то после совмещения плоскостей обе проекции окажутся лежащими над осью OX.
Бесплатно скачать реферат "Ортогональные проекции" в полном объеме