Реферат: Молекулы генетического аппарата



Почти все ферменты и регуляторные белки имеют глобулярную форму; это и есть их третичная структура. Боковые цепи полярных аминокислот локализуются на поверхности глобулы, контактирующей с растворителем, а боковые цепи неполярных аминокислот упрятаны внутри и экранированы от водной среды. Плотно скрученные полипептидные цепи содержат варьирующее число а-спиралей и. Биологически активная четвертичная структура белка поддерживается с помощью разнообразных взаимодействий между аминокислотами. К ним относятся:
1) взаимодействия, которые ответственны за формирование а-спиралей и водородные связи между некоторыми боковыми группами аминокислот;
3) ионные связи между противоположно заряженными боковыми группами;
4) ковалентные дисульфидные связи между отдаленными друг от друга вдоль цепи остатками цистеина;
5) гидрофобные взаимодействия между боковыми группами, более прочные, чем взаимодействия с водной фазой на наружной поверхности белковой глобулы. Относительный вклад всех этих сил в стабилизацию структуры у разных белков варьирует.
При нагревании либо повышении или понижении рН нативная глобула разворачивается. Этот процесс обратим, т.е. третичная структура может восстанавливаться с образованием тех химических и физических взаимодействий, которые стабилизируют нативную компактную кон-формацию. Механизм правильного свертывания полипептидной цепи и промежуточные этапы этого процесса интенсивно изучаются.
Большинство глобулярных белков-олигомеры. Примером глобулярных белков могут служить гемоглобин и иммуноглобулин. Четвертичная структура подобных белков определяется тем, как взаимодействуют между собой в олигомерной структуре отдельные свернутые полипептидные цепи. В гемоглобине, например, благодаря взаимодействию аминокислот, входящих в состав а-спиралей и детальные исследования структуры гемоглобина позволили установить, как изменяются соответствующие взаимодействия при связывании этим белком кислорода.
Вторичная, третичная и четвертичная структуры белков тесно связаны между собой и в конечном счете определяются первичной структурой одной или нескольких полипептидных цепей. Последствия такой взаимосвязи очень значительны: информация, определяющая укладку белковой молекулы и переход ее в биологически активное состояние, закодирована в его аминокислотной последовательности. Подтверждением этого принципиального положения служит то, что химические модификации и мутационные изменения аминокислотной последовательности полипептидов сильно влияют на их ренатурацию и способность формировать вторичную, третичную и четвертичную структуры с полноценной биологической активностью.
В качестве одного из многочисленных примеров зависимости структуры и функции белка от его аминокислотной последовательности можно привести серповидноклеточную анемию. Генетическое нарушение при этой болезни выражается в замене глутаминовой кислоты, шестой по счету от N-конца в-цепи в нормальном гемоглобине, на валин. Изменение в первичной структуре в-глобина приводит
к тому, что на поверхности белковой глобулы оказывается аномальная гидрофобная аминокислота, из-за чего происходит агрегация дезоксигенированного гемоглобина с образованием олигомерных структур более высокого уровня организации. В результате форма и пластичность эритроцитов изменяются, и кровоток через капилляры и мелкие вены затрудняется или вовсе прекращается. Основной вывод, который можно сделать из этого классического случая, состоит в том, что одна-единственная мутация - замена нуклеотида в последовательности ДНК, приводящая к замене одной аминокислоты на другую в специфическом сайте полипептидной цепи, - может оказывать столь драматическое влияние на конформацию белка и его физиологическую функцию. В более общем смысле, таков механизм, связывающий генотипы всех организмов с их фенотипами.

Безкоштовно скачати реферат "Молекулы генетического аппарата" в повному обсязі