Курсова: Диференціальні рівняння



Під час розв'язування багатьох практичних задач доводиться знаходити невідому функцію з рівняння, яке містить поряд з цією невідомою функцією її похідні.
Рівняння, яке містить невідому функцію та її похідні, називається диференціальним. Порядок найвищої похідної, яка входить до диференціального рівняння, називається його порядком. Наприклад, рівняння
y''+ 4у = 0 є диференціальним рівнянням другого порядку.
Якщо до рівняння входить незалежна змінна, невідома функція і її похідна, то це рівняння називається диференціальним рівнянням першого порядку. Якщо, крім того, в рівняння входить похідна другого порядку від шуканої функції, то рівняння називається диференціальним рівнянням другого порядку і т. д.
Будь-яку функцію, що задовольняє диференціальне рівняння, називають розв'язком, або інтегралом цього рівняння, а розв'язування диференціального рівняння - інтегруванням. Наприклад, функція у = ex є розв'язком диференціального рівняння у — у' = 0, бо (єx)' = ex.
Функція у = cos x є розв'язком диференціального рівняння у" + у == 0.
Справді, для функції у = cos x, маємо:

Безкоштовно скачати реферат "Диференціальні рівняння" в повному обсязі